Programming, Data Structures and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 06
Lecture - 03
Generating Permutations

(Refer Slide Time: 00:03)

Backtracking

* Systematically search for a solution
* Build the solution one step at a time
* |f we hit a dead-end

* Undo the last step

* Try the next option

We will be looking at Backtracking. In backtracking we systematically search for a
solution one step at a time and when we hit a dead end we undo the last step and try the

next option.

443

(Refer Slide Time: 00:14)

Generating permutations

* Often useful when we need to try out all possibilities

* Each potential columnwise placement of N
queens is a permutation of {0,1,...,N-1}

* Given a permutation, generate the next one

* For instance, what is the next sequence formed
from {a,b,..,m} , in dictionary order after

dichbiaerg 'l kioon'mj i

Now, in the process of doing the backtracking we need to generate all the possibilities.
For instance, remember when we try to printout all the queens we ran through every
possible position for every queen on every row, and if it was free then we tried it out and
if the solution extended to a final case then we print it out. Now if we look at the
solutions that we get for the 8 queens, each queen on row is in a different column from
every other queen. The column numbers if we read then row by row, the column
numbers form a permutation of 0 to N minus 1. So, each number 0 to N minus 1 occurs

exactly once as a column number for the n queens.

So, one way of solving a problem like 8 queens or similar problems is actually it
generate all permutations and keep trying them one at a time. This give rise to the
following question; if we have a permutation of 0 to N minus 1 how do we generate the
next permutation. This is like thinking of it as a next number, but this could be in an

arbitrary number of symbols.

Suppose, we have the letters a to m. So, these are the first thirteen letters of the alphabet
and we treat the dictionary order of words as the ordering of numbers, we think of them
as digits if you want to think of it is base thirteen. Here for instance, is a number in a
base thirty or now alternatively a rearrangement of a to m in some order. Now what we
want to is, what is the next rearrangement after this you immediately next one in

dictionary order.

444

(Refer Slide Time: 01:54)

Generating permutations |

* Smallest permutation — all elements in ascending order
abcdefghijklm i
* Largest permutation — all elements in descending order

m Lol =i thgifiie dic b ia

|
5
* Next permutation — find shortest suffix that can be [
incremented }
|
1

* Or longest suffix that cannot be incremented

In order to solve this problem the first observation we can make is that, if we have a
sequence of such letters or digits the smallest permutation is the order in which the
elements are arranged in ascending order. So we start with @lwhich is smallest one then b
and ¢ and so on and there is no smaller permutation than this one. Similarly, the largest
permutation is one in which all the elements are in descending order, so we start with the

largest element m and we work backwards down to a.

If we want to find the next permutation we need to find as short suffix as possible that
can be incremented, it is probably easiest to do it in terms of a numbers but let us do it
with letters. The shortest suffix that can be incremented consists of something followed
by the longest suffix cannot be incremented. So this will become a little clear when we

work through an example.

445

(Refer Slide Time: 02:56)

| Next permutation
* Longest suffix that cannot be incremented
* Already in descending order

* The suffix starting one position earlier can be
incremented

* Replace k by next largest letter to its right, m

neaty
* Rearrage k o n j i inascgénding order

decih by a eggeiemeil iy KEni o

We want to find the longest suffix that cannot be incremented. So, a suffix that cannot be
incremented is one which is as large as it could possibly be which means that it is already
in descending order. If you look at example that we had before for which we want to
define the next permutation, we find this suffix o n m j i these five letters are in

descending orders so I cannot make any larger permutation using this.

So, if I fix the letter from d to k then this the largest permutation [can generate with d to
k fixed. If I want to change it and need to increment something and I mean to increment
it, I cannot increment it within this red box so I must extend this to find the shortest
suffix namely; suffix started with k where something can be incremented. Now how do
we increment this? Well, what we need to do is that now is like say that we have with k
we cannot do any better so we have to replace k by something bigger and the something
bigger has to be the smallest thing that we can replace it by, so we will replace k at the

next largest letter to its right namely m.

Among these letters m n and o are bigger than k if I replace it by j or i, I will get a
smaller permutation which I do not want, so I may replace it m n or o, but among these
this m is the smallest I must now start a sequence where the suffix of length six begins
with the letter m. And among suffix thatbegins with letter m I need the smallest one, that
mean [rearrange the remaining letters k o n j 1 in ascending order to give me the smallest

permutation to begin with m and has the letters k o n j i after it.

446

This gives me this permutation. So, I have now moved this m here and I have now taken
these letters and rearrange them in an ascending order to get i j k n o. Therefore, this

means that for this permutation the next permutation is this one.

(Refer Slide Time: 04:55)

Implementation

* From the right, identify first decreasing position
\
dic hiib a eighlek o nem:q:1
| * Swap that value with its next larger letter to its right

——

dicéhiblia e ghliim osnsic S

* Finding next larger letter is simi insert
* Reverse the increasing suffix

dic b ae glma gilkno

So, algorithmically we can do it as follows, what we need to do is first identify the suffix
that can be incremented. We begin by looking for suffix that cannot be incremented
namely we go backwards so long as it is in descending order. So we keep looking for
values as they increase. So, i is smaller than j, j is smaller than m, m is smaller than n, n
is smaller than o, but o is bigger than k so that means than up to here we have a suffix

that cannot be incremented and this is the first position where we can make an increment.

Having done this we now need to replace k by the letter to its right which is next bigger.
Now this is a bit like insert we go one by one, we say that k smaller than n so we
continue, and we say than k is bigger than j so we stop here. So this tells us that the letter
m is the one we want. We can identify this in one scan, because this remember it is in
descending order, it is in sorted order so we can go through and find the first position
where we crossed on something bigger than k to something smaller than k and that is the
position of the letter that we need to change. So, it is exactly like inserting something

into a sorted list.

Now having done this, we have exchange this m and k now we need to put this in

ascending order, but remember it was in descending order and what we did to the

447

descending order we replace m by k but what are the property of k? k was smaller than m
but bigger than j so, o n k j i remains in descending order. If we want convert it to
ascending order we do not need to sort it we just need to reverse it we just needed

backwards, so this is just the reversal of this.

This is a concrete way in all to which find the next permutation, walk backwards from
the end and see when the order stops increasing. So, wherever we first decrease this that
is the suffix that you want to increment, of course if we go all the way and go back to the
first letter and we are not found such a position then we have already reached the last

permutation in the overall scheme of things.

Once we find such a position we find which letter to swap it with by doing equivalent of
the search that we do for insertion sort. So, we do an insert kind of thing find the position
in this case m to swap with k after swapping it we take the suffix after the new letter we

put namely m and we reverse it to get the smallest permutation starting with that letter m.

448

